TABLE B1 EXAMPLE SCIENCE TRACEABILITY MATRIX | | | Scientific Me
Require | | Instrument | | | Mission
Functional | |------------------|-----------------------|---|--|-------------------------------|---------------------------------|------------------------------|---| | Science
Goals | Science
Objectives | Observables | Physical parameters | Func
Requir | tional | Projected
Performance | Requirements
(Top Level) | | Goal 1 | | Absorption line | Column
density of
absorber | | | | Observing
strategies: requires
yaw and elevation
maneuvers | | Goal 2 | | Emission line | Density and
temperature
of emitter | Alt.
Range | XX km | ZZ km | Launch window:
to meet nadir and
limb overlap
requirement.
Window applies
day to day | | Etc. | Objective 1 | | Size of
features | Vert.
Resol. | XX km | ZZ km | Need AA seasons
to trace evolution
of phenomena | | | | Morphological
feature | | Horiz.
Resol. | XX deg x
XX lat x
XX long | ZZ deg x ZZ
lat x ZZ long | | | | | | Rise time of
eruptive
phenomenon | Temp.
Resol. | XX min | ZZ min. | Need AA months
of observation to
observe variability
of phenomena | | | | | | Precision | XX K | ZZ K | | | | | Rate of change
of observable
phenomenon | | Accuracy | XX K | ZZ K | | | | Objective 2
to N | | | Repeat
above
categories | | | | ## TABLE B2 EXAMPLE MISSION TRACEABILITY MATRIX | Mission
Functional
Requirements | Mission Design
Requirements | Spacecraft
Requirements | Ground System
Requirements | Operations
Requirements | |---|--|---|--|--| | From Table B1 | Rocket type Launch date: Mission length Orbit altitude requirement and rationale Geographic coverage and how it drives orbit requirement Orbit local time and rationale for the requirement Type of orbit, e.g. Sun synchronous, precessing, Lagrangian point, other Other | Spinning, stabilized Mass Power Volume: Data Rate Temperature Range for spacecraft systems Pointing Control: Knowledge, Stability, Jitter, Drift, Other Detector radiation shielding requirements and rationale Other | Passes per day and duration Assumed antenna size Data volume per day Real time data transmission requirements Transmit frequency Power available for comm (Watts) Downlink data rate Number of data dumps per day Spacecraft data destination (e.g., mission operations center) Science data destination (e.g., science operations center) Other | General spacecraft maneuver requirements and frequency Special maneuvers requirements Rationale for maneuvers Ephemeris requirements Changes in viewing modes and directions per orbit, per day or over longer time periods. Rationale for these changes Other | | Msn Functional Req or
Instrument
Accommodation (from
Table B1) | Mission | Spacecraft | Ground System | Operations | | Four different observing
strategies: Solar, limb,
nadir, zenith; requires
yaw and elevation
maneuvers | | Agility requirements Slew rate = y deg/sec Settle = stability < .001 deg/sec after 30 secs | | Target planning on 3 day
centers Ephemeris accuracy of x
with updates every 2
days | | Instrument X precision of
5K | | Thermal stability of 1
deg/hr
S/C bus stability of .01
deg over 10 secs | Bit error rate < 1e-5 Time correlation to 2 msec over 1 week | Weekly time correlation |